
    2;ji3                     N    d dl Zd dlZd dlmZ d dlmZmZ  G d de          Z	dS )    N)	det_curve)"_BinaryClassifierCurveDisplayMixin_deprecate_y_pred_parameterc            	       ~    e Zd ZdZddddZedddddddd            Ze	 ddddddd	d
d            ZddddZdS )DetCurveDisplaya  Detection Error Tradeoff (DET) curve visualization.

    It is recommended to use :func:`~sklearn.metrics.DetCurveDisplay.from_estimator`
    or :func:`~sklearn.metrics.DetCurveDisplay.from_predictions` to create a
    visualizer. All parameters are stored as attributes.

    For general information regarding `scikit-learn` visualization tools, see
    the :ref:`Visualization Guide <visualizations>`.
    For guidance on interpreting these plots, refer to the
    :ref:`Model Evaluation Guide <det_curve>`.

    .. versionadded:: 0.24

    Parameters
    ----------
    fpr : ndarray
        False positive rate.

    fnr : ndarray
        False negative rate.

    estimator_name : str, default=None
        Name of estimator. If None, the estimator name is not shown.

    pos_label : int, float, bool or str, default=None
        The label of the positive class. If not `None`, this value is displayed in
        the x- and y-axes labels.

    Attributes
    ----------
    line_ : matplotlib Artist
        DET Curve.

    ax_ : matplotlib Axes
        Axes with DET Curve.

    figure_ : matplotlib Figure
        Figure containing the curve.

    See Also
    --------
    det_curve : Compute error rates for different probability thresholds.
    DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
        some data.
    DetCurveDisplay.from_predictions : Plot DET curve given the true and
        predicted labels.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.metrics import det_curve, DetCurveDisplay
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.svm import SVC
    >>> X, y = make_classification(n_samples=1000, random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, test_size=0.4, random_state=0)
    >>> clf = SVC(random_state=0).fit(X_train, y_train)
    >>> y_score = clf.decision_function(X_test)
    >>> fpr, fnr, _ = det_curve(y_test, y_score)
    >>> display = DetCurveDisplay(
    ...     fpr=fpr, fnr=fnr, estimator_name="SVC"
    ... )
    >>> display.plot()
    <...>
    >>> plt.show()
    N)estimator_name	pos_labelc                >    || _         || _        || _        || _        d S Nfprfnrr   r	   )selfr   r   r   r	   s        Y/root/voice-cloning/.venv/lib/python3.11/site-packages/sklearn/metrics/_plot/det_curve.py__init__zDetCurveDisplay.__init__S   s#    ,"    Tauto)sample_weightdrop_intermediateresponse_methodr	   nameaxc                j    |                      ||||||          \  }}} | j        d||||||	|d|
S )a&  Plot DET curve given an estimator and data.

        For general information regarding `scikit-learn` visualization tools, see
        the :ref:`Visualization Guide <visualizations>`.
        For guidance on interpreting these plots, refer to the
        :ref:`Model Evaluation Guide <det_curve>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        estimator : estimator instance
            Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a classifier.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        drop_intermediate : bool, default=True
            Whether to drop thresholds where true positives (tp) do not change
            from the previous or subsequent threshold. All points with the same
            tp value have the same `fnr` and thus same y coordinate.

            .. versionadded:: 1.7

        response_method : {'predict_proba', 'decision_function', 'auto'}                 default='auto'
            Specifies whether to use :term:`predict_proba` or
            :term:`decision_function` as the predicted target response. If set
            to 'auto', :term:`predict_proba` is tried first and if it does not
            exist :term:`decision_function` is tried next.

        pos_label : int, float, bool or str, default=None
            The label of the positive class. By default, `estimators.classes_[1]`
            is considered as the positive class.

        name : str, default=None
            Name of DET curve for labeling. If `None`, use the name of the
            estimator.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.DetCurveDisplay`
            Object that stores computed values.

        See Also
        --------
        det_curve : Compute error rates for different probability thresholds.
        DetCurveDisplay.from_predictions : Plot DET curve given the true and
            predicted labels.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import DetCurveDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(n_samples=1000, random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...     X, y, test_size=0.4, random_state=0)
        >>> clf = SVC(random_state=0).fit(X_train, y_train)
        >>> DetCurveDisplay.from_estimator(
        ...    clf, X_test, y_test)
        <...>
        >>> plt.show()
        )r   r	   r   )y_truey_scorer   r   r   r   r	    )!_validate_and_get_response_valuesfrom_predictions)cls	estimatorXyr   r   r   r	   r   r   kwargsr   s               r   from_estimatorzDetCurveDisplay.from_estimatorY   s{    ~ $'#H#H+ $I $
 $
 D $s# 	
'/	
 	
 	
 	
 		
r   
deprecated)r   r   r	   r   r   y_predc                    t          ||d          }|                     |||||          \  }
}t          |||||          \  }}} | ||||
          } |j        d||d|	S )u&  Plot the DET curve given the true and predicted labels.

        For general information regarding `scikit-learn` visualization tools, see
        the :ref:`Visualization Guide <visualizations>`.
        For guidance on interpreting these plots, refer to the
        :ref:`Model Evaluation Guide <det_curve>`.

        .. versionadded:: 1.0

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True labels.

        y_score : array-like of shape (n_samples,)
            Target scores, can either be probability estimates of the positive
            class, confidence values, or non-thresholded measure of decisions
            (as returned by `decision_function` on some classifiers).

            .. versionadded:: 1.8
                `y_pred` has been renamed to `y_score`.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        drop_intermediate : bool, default=True
            Whether to drop thresholds where true positives (tp) do not change
            from the previous or subsequent threshold. All points with the same
            tp value have the same `fnr` and thus same y coordinate.

            .. versionadded:: 1.7

        pos_label : int, float, bool or str, default=None
            The label of the positive class. When `pos_label=None`, if `y_true`
            is in {-1, 1} or {0, 1}, `pos_label` is set to 1, otherwise an
            error will be raised.

        name : str, default=None
            Name of DET curve for labeling. If `None`, name will be set to
            `"Classifier"`.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        y_pred : array-like of shape (n_samples,)
            Target scores, can either be probability estimates of the positive
            class, confidence values, or non-thresholded measure of decisions
            (as returned by “decision_function” on some classifiers).

            .. deprecated:: 1.8
                `y_pred` is deprecated and will be removed in 1.10. Use
                `y_score` instead.

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.DetCurveDisplay`
            Object that stores computed values.

        See Also
        --------
        det_curve : Compute error rates for different probability thresholds.
        DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
            some data.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import make_classification
        >>> from sklearn.metrics import DetCurveDisplay
        >>> from sklearn.model_selection import train_test_split
        >>> from sklearn.svm import SVC
        >>> X, y = make_classification(n_samples=1000, random_state=0)
        >>> X_train, X_test, y_train, y_test = train_test_split(
        ...     X, y, test_size=0.4, random_state=0)
        >>> clf = SVC(random_state=0).fit(X_train, y_train)
        >>> y_score = clf.decision_function(X_test)
        >>> DetCurveDisplay.from_predictions(
        ...    y_test, y_score)
        <...>
        >>> plt.show()
        z1.8)r   r	   r   )r	   r   r   r   r   r   r   )r   !_validate_from_predictions_paramsr   plot)r   r   r   r   r   r	   r   r   r&   r#   pos_label_validatedr   r   _vizs                  r   r   z DetCurveDisplay.from_predictions   s    F .gvuEE$'$I$IG=ITX %J %
 %
!T  '/
 
 
S! c)	
 
 
 sx32D33F333r   )r   c                t   |                      ||          \  | _        | _        }|i nd|i} |j        di | t	          j        | j        j                  j        }| j        	                    |d|z
            | _        | j
        	                    |d|z
            | _
         | j        j        t          j        j                            | j                  t          j        j                            | j
                  fi |\  | _        | j        d| j         dnd}d|z   }d	|z   }| j                            ||
           d|v r| j                            d           g d}	t          j        j                            |	          }
d |	D             }| j                            |
           | j                            |           | j                            dd           | j                            |
           | j                            |           | j                            dd           | S )ap  Plot visualization.

        Parameters
        ----------
        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        name : str, default=None
            Name of DET curve for labeling. If `None`, use `estimator_name` if
            it is not `None`, otherwise no labeling is shown.

        **kwargs : dict
            Additional keywords arguments passed to matplotlib `plot` function.

        Returns
        -------
        display : :class:`~sklearn.metrics.DetCurveDisplay`
            Object that stores computed values.
        r(   Nlabel   z (Positive label: ) zFalse Positive RatezFalse Negative Rate)xlabelylabelzlower right)loc)	gMbP?g{Gz?g?g?g      ?g?gffffff?gGz?g+?c                     g | ]C}d |z                                   rd                    |          nd                    |          DS )d   z{:.0%}z{:.1%})
is_integerformat).0ss     r   
<listcomp>z(DetCurveDisplay.plot.<locals>.<listcomp>y  sZ     
 
 
 $'7"6"6"8"8PHOOAhooa>P>P
 
 
r      r   )_validate_plot_paramsax_figure_updatenpfinfor   dtypeepsclipr   r*   spstatsnormppfline_r	   setlegend
set_xticksset_xticklabelsset_xlim
set_yticksset_yticklabelsset_ylim)r   r   r   r#   line_kwargsrF   info_pos_labelr3   r4   tickstick_locationstick_labelss               r   r*   zDetCurveDisplay.plotE  s8   * (,'A'ARd'A'S'S$$, Lbbwo$$V$$$ htx~&&*8==a#g..8==a#g..%HMdh''HMdh''
 
 
 
 7;n6P22222VX 	 '7&7F6222k!!HOOO...GGG**511
 

 
 
 	N+++  ---"a   N+++  ---"a   r   r   )	__name__
__module____qualname____doc__r   classmethodr$   r   r*   r   r   r   r   r      s        B BH 484 # # # # #  p
 p
 p
 p
 [p
d  v4
 v4 v4 v4 v4 [v4p?D ? ? ? ? ? ? ?r   r   )
numpyrC   scipyrH   sklearn.metrics._rankingr   sklearn.utils._plottingr   r   r   r   r   r   <module>rc      s            . . . . . .       v v v v v8 v v v v vr   