
    3;jiQ                         d dl Z d dlmZ d dlZd dlmZmZmZ d dl	m
Z
 d dlmZ d dlmZmZmZ d dlmZ d dlmZmZmZmZmZ  G d	 d
ee          ZdS )    N)Integral)BaseEstimatorTransformerMixin_fit_context)OneHotEncoder)resample)IntervalOptions
StrOptions)_weighted_percentile)_check_feature_names_in_check_sample_weightcheck_arraycheck_is_fittedvalidate_datac                   H   e Zd ZU dZ eeddd          dg eh d          g eh d          g eh d	          g eee	j
        e	j        h          dg eed
dd          dgdgdZeed<   	 dddddddddZ ed          dd            Zd Zd Zd ZddZdS )KBinsDiscretizera  
    Bin continuous data into intervals.

    Read more in the :ref:`User Guide <preprocessing_discretization>`.

    .. versionadded:: 0.20

    Parameters
    ----------
    n_bins : int or array-like of shape (n_features,), default=5
        The number of bins to produce. Raises ValueError if ``n_bins < 2``.

    encode : {'onehot', 'onehot-dense', 'ordinal'}, default='onehot'
        Method used to encode the transformed result.

        - 'onehot': Encode the transformed result with one-hot encoding
          and return a sparse matrix. Ignored features are always
          stacked to the right.
        - 'onehot-dense': Encode the transformed result with one-hot encoding
          and return a dense array. Ignored features are always
          stacked to the right.
        - 'ordinal': Return the bin identifier encoded as an integer value.

    strategy : {'uniform', 'quantile', 'kmeans'}, default='quantile'
        Strategy used to define the widths of the bins.

        - 'uniform': All bins in each feature have identical widths.
        - 'quantile': All bins in each feature have the same number of points.
        - 'kmeans': Values in each bin have the same nearest center of a 1D
          k-means cluster.

        For an example of the different strategies see:
        :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py`.

    quantile_method : {"inverted_cdf", "averaged_inverted_cdf",
            "closest_observation", "interpolated_inverted_cdf", "hazen",
            "weibull", "linear", "median_unbiased", "normal_unbiased"},
            default="linear"
            Method to pass on to np.percentile calculation when using
            strategy="quantile". Only `averaged_inverted_cdf` and `inverted_cdf`
            support the use of `sample_weight != None` when subsampling is not
            active.

            .. versionadded:: 1.7

    dtype : {np.float32, np.float64}, default=None
        The desired data-type for the output. If None, output dtype is
        consistent with input dtype. Only np.float32 and np.float64 are
        supported.

        .. versionadded:: 0.24

    subsample : int or None, default=200_000
        Maximum number of samples, used to fit the model, for computational
        efficiency.
        `subsample=None` means that all the training samples are used when
        computing the quantiles that determine the binning thresholds.
        Since quantile computation relies on sorting each column of `X` and
        that sorting has an `n log(n)` time complexity,
        it is recommended to use subsampling on datasets with a
        very large number of samples.

        .. versionchanged:: 1.3
            The default value of `subsample` changed from `None` to `200_000` when
            `strategy="quantile"`.

        .. versionchanged:: 1.5
            The default value of `subsample` changed from `None` to `200_000` when
            `strategy="uniform"` or `strategy="kmeans"`.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for subsampling.
        Pass an int for reproducible results across multiple function calls.
        See the `subsample` parameter for more details.
        See :term:`Glossary <random_state>`.

        .. versionadded:: 1.1

    Attributes
    ----------
    bin_edges_ : ndarray of ndarray of shape (n_features,)
        The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )``
        Ignored features will have empty arrays.

    n_bins_ : ndarray of shape (n_features,), dtype=np.int64
        Number of bins per feature. Bins whose width are too small
        (i.e., <= 1e-8) are removed with a warning.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    Binarizer : Class used to bin values as ``0`` or
        ``1`` based on a parameter ``threshold``.

    Notes
    -----

    For a visualization of discretization on different datasets refer to
    :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py`.
    On the effect of discretization on linear models see:
    :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py`.

    In bin edges for feature ``i``, the first and last values are used only for
    ``inverse_transform``. During transform, bin edges are extended to::

      np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf])

    You can combine ``KBinsDiscretizer`` with
    :class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess
    part of the features.

    ``KBinsDiscretizer`` might produce constant features (e.g., when
    ``encode = 'onehot'`` and certain bins do not contain any data).
    These features can be removed with feature selection algorithms
    (e.g., :class:`~sklearn.feature_selection.VarianceThreshold`).

    Examples
    --------
    >>> from sklearn.preprocessing import KBinsDiscretizer
    >>> X = [[-2, 1, -4,   -1],
    ...      [-1, 2, -3, -0.5],
    ...      [ 0, 3, -2,  0.5],
    ...      [ 1, 4, -1,    2]]
    >>> est = KBinsDiscretizer(
    ...     n_bins=3, encode='ordinal', strategy='uniform'
    ... )
    >>> est.fit(X)
    KBinsDiscretizer(...)
    >>> Xt = est.transform(X)
    >>> Xt  # doctest: +SKIP
    array([[ 0., 0., 0., 0.],
           [ 1., 1., 1., 0.],
           [ 2., 2., 2., 1.],
           [ 2., 2., 2., 2.]])

    Sometimes it may be useful to convert the data back into the original
    feature space. The ``inverse_transform`` function converts the binned
    data into the original feature space. Each value will be equal to the mean
    of the two bin edges.

    >>> est.bin_edges_[0]
    array([-2., -1.,  0.,  1.])
    >>> est.inverse_transform(Xt)
    array([[-1.5,  1.5, -3.5, -0.5],
           [-0.5,  2.5, -2.5, -0.5],
           [ 0.5,  3.5, -1.5,  0.5],
           [ 0.5,  3.5, -1.5,  1.5]])

    While this preprocessing step can be an optimization, it is important
    to note the array returned by ``inverse_transform`` will have an internal type
    of ``np.float64`` or ``np.float32``, denoted by the ``dtype`` input argument.
    This can drastically increase the memory usage of the array. See the
    :ref:`sphx_glr_auto_examples_cluster_plot_face_compress.py`
    where `KBinsDescretizer` is used to cluster the image into bins and increases
    the size of the image by 8x.
       Nleft)closedz
array-like>   onehot-denseonehotordinal>   kmeansuniformquantile>
   warnhazenlinearweibullinverted_cdfmedian_unbiasednormal_unbiasedclosest_observationaveraged_inverted_cdfinterpolated_inverted_cdf   random_staten_binsencodestrategyquantile_methoddtype	subsampler(   _parameter_constraints   r   r   r   i@ )r+   r,   r-   r.   r/   r(   c                h    || _         || _        || _        || _        || _        || _        || _        d S Nr)   )selfr*   r+   r,   r-   r.   r/   r(   s           _/root/voice-cloning/.venv/lib/python3.11/site-packages/sklearn/preprocessing/_discretization.py__init__zKBinsDiscretizer.__init__   s=      .
"(    T)prefer_skip_nested_validationc                 n	   t          | |d          }| j        t          j        t          j        fv r| j        }n|j        }|j        \  }}|t          |||j                  }| j        +|| j        k    r t          |d| j        | j	        |          }d}|j        d         }| 
                    |          }t          j        |t                    }| j        }	| j        dk    r"|	dk    rt          j        d	t"                     d
}	| j        dk    r|	dvr|t%          d|	 d          | j        dk    r	||dk    }
nt'          d          }
t)          |          D ]}|dd|f         }||
                                         }||
                                         }||k    rKt          j        d|z             d||<   t          j        t          j         t          j        g          ||<   | j        dk    r$t          j        ||||         dz             ||<   nu| j        dk    rt          j        dd||         dz             }i }|	d
k    r||	|d<   |6t          j        t          j        ||fi |t          j                  ||<   n|	dk    rdnd}t9          ||||          ||<   n| j        dk    rddlm} t          j        ||||         dz             }|dd         |dd         z   dddf         dz  } |||         |d          }|                    |dddf         |          j         dddf         }|!                                 |dd         |dd         z   dz  ||<   t          j"        |||         |f         ||<   | j        dv rt          j#        ||         t          j                  dk    }||         |         ||<   tI          ||                   dz
  ||         k    r2t          j        d|z             tI          ||                   dz
  ||<   || _%        || _&        d | j'        v rotQ          d! | j&        D             | j'        d k    |"          | _)        | j)                            t          j        dtI          | j&                  f                     | S )#a  
        Fit the estimator.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        y : None
            Ignored. This parameter exists only for compatibility with
            :class:`~sklearn.pipeline.Pipeline`.

        sample_weight : ndarray of shape (n_samples,)
            Contains weight values to be associated with each sample.

            .. versionadded:: 1.3

            .. versionchanged:: 1.7
               Added support for strategy="uniform".

        Returns
        -------
        self : object
            Returns the instance itself.
        numericr.   NT)replace	n_samplesr(   sample_weightr'   r   r   a%  The current default behavior, quantile_method='linear', will be changed to quantile_method='averaged_inverted_cdf' in scikit-learn version 1.9 to naturally support sample weight equivalence properties by default. Pass quantile_method='averaged_inverted_cdf' explicitly to silence this warning.r   )r!   r%   zWhen fitting with strategy='quantile' and sample weights, quantile_method should either be set to 'averaged_inverted_cdf' or 'inverted_cdf', got quantile_method='z
' instead.r   z3Feature %d is constant and will be replaced with 0.r   d   methodr%   F)averager   )KMeans      ?)
n_clustersinitn_init)r>   )r   r   )to_beging:0yE>zqBins whose width are too small (i.e., <= 1e-8) in feature %d are removed. Consider decreasing the number of bins.r   c                 6    g | ]}t          j        |          S  )nparange.0is     r5   
<listcomp>z(KBinsDiscretizer.fit.<locals>.<listcomp>  s     ???QBIaLL???r7   )
categoriessparse_outputr.   )*r   r.   rK   float64float32shaper   r/   r   r(   _validate_n_binszerosobjectr-   r,   warningsr   FutureWarning
ValueErrorslicerangeminmaxarrayinflinspaceasarray
percentiler   sklearn.clusterrB   fitcluster_centers_sortr_ediff1dlen
bin_edges_n_bins_r+   r   _encoder)r4   Xyr>   output_dtyper=   
n_featuresr*   	bin_edgesr-   nnz_weight_maskjjcolumncol_mincol_maxpercentile_levelspercentile_kwargsrA   rB   uniform_edgesrF   kmcentersmasks                           r5   rf   zKBinsDiscretizer.fit   sy   6 $333:"*bj111:LL7L !	:$0QQQM>%)dn*D*D .!.+  A !MWQZ
&&z22HZv666	 .=J&&?f+D+DM    'O MZ'''PPP)T8GT T T   =J&&=+D ,q0OO $DkkO
## A	8 A	8Bqqq"uXF_-1133G_-1133G'!!IBN   r
 "26'26): ; ;	"}	)) "GWfRj1n M M	"*,,$&K3r
Q$G$G!
 %'!"h..=3H2A%h/ ($&Jf.?UUCTUU j% % %IbMM !03J J JPU  %9/@'% % %IbMM (**222222 !#GWfRj1n M M%abb)M#2#,>>4H3N VvbzQGGG&&111d7O= !  "111a4) !(wss|!;s B	" "gy}g&E F	" } 666z)B-"&AAADH )"d 3	"y}%%)VBZ77M9;=>  
 "%Yr]!3!3a!7F2J#t{"")??$,???"kX5"  DM Mbh3t|+<+<'=>>???r7   c                    | j         }t          |t                    rt          j        ||t
                    S t          |t
          dd          }|j        dk    s|j        d         |k    rt          d          |dk     ||k    z  }t          j
        |          d         }|j        d         dk    rLd	                    d
 |D                       }t          d                    t          j        |                    |S )z0Returns n_bins_, the number of bins per feature.r;   TF)r.   copy	ensure_2dr'   r   z8n_bins must be a scalar or array of shape (n_features,).r   z, c              3   4   K   | ]}t          |          V  d S r3   )strrM   s     r5   	<genexpr>z4KBinsDiscretizer._validate_n_bins.<locals>.<genexpr>  s(      BB1ABBBBBBr7   zk{} received an invalid number of bins at indices {}. Number of bins must be at least 2, and must be an int.)r*   
isinstancer   rK   fullintr   ndimrU   r[   wherejoinformatr   __name__)r4   rr   	orig_binsr*   bad_nbins_valueviolating_indicesindicess          r5   rV   z!KBinsDiscretizer._validate_n_bins  s   K	i** 	=7:y<<<<YcNNN;??fl1o;;WXXX!A:&I*=>H_55a8"1%))iiBB0ABBBBBG::@&$-w; ;   r7   c                 (   t          |            | j        t          j        t          j        fn| j        }t          | |d|d          }| j        }t          |j        d                   D ]8}t          j	        ||         dd         |dd|f         d          |dd|f<   9| j
        d	k    r|S d}d
| j
        v r| j        j        }|j        | j        _        	 | j                            |          }|| j        _        n# || j        _        w xY w|S )a  
        Discretize the data.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data to be discretized.

        Returns
        -------
        Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}
            Data in the binned space. Will be a sparse matrix if
            `self.encode='onehot'` and ndarray otherwise.
        NTF)r   r.   resetr'   rC   right)sider   r   )r   r.   rK   rS   rT   r   rl   r]   rU   searchsortedr+   rn   	transform)r4   ro   r.   Xtrs   ru   
dtype_initXt_encs           r5   r   zKBinsDiscretizer.transform  s)    	 -1J,>RZ((DJ4U%HHHO	$$ 	V 	VB	"ad(;R2YWUUUBqqq"uII;)##I
t{"",J"$(DM	-],,R00F #-DM*DM,,,,s   D Dc                 6   t          |            d| j        v r| j                            |          }t	          |dt
          j        t
          j        f          }| j        j	        d         }|j	        d         |k    r.t          d                    ||j	        d                             t          |          D ]]}| j        |         }|dd         |dd         z   d	z  }||dd|f                             t
          j                           |dd|f<   ^|S )
a  
        Transform discretized data back to original feature space.

        Note that this function does not regenerate the original data
        due to discretization rounding.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Transformed data in the binned space.

        Returns
        -------
        X_original : ndarray, dtype={np.float32, np.float64}
            Data in the original feature space.
        r   T)r   r.   r   r'   z8Incorrect number of features. Expecting {}, received {}.NrC   rD   )r   r+   rn   inverse_transformr   rK   rS   rT   rm   rU   r[   r   r]   rl   astypeint64)r4   ro   Xinvrr   ru   rs   bin_centerss          r5   r   z"KBinsDiscretizer.inverse_transform  s    $ 	t{""//22A14
BJ/GHHH\'*
:a=J&&JQQ
1    
## 	F 	FB+I$QRR=9SbS>9S@K%tAAArE{&:&:28&D&DEDBKKr7   c                     t          | d           t          | |          }t          | d          r| j                            |          S |S )a  Get output feature names.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

            - If `input_features` is `None`, then `feature_names_in_` is
              used as feature names in. If `feature_names_in_` is not defined,
              then the following input feature names are generated:
              `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
            - If `input_features` is an array-like, then `input_features` must
              match `feature_names_in_` if `feature_names_in_` is defined.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        n_features_in_rn   )r   r   hasattrrn   get_feature_names_out)r4   input_featuress     r5   r   z&KBinsDiscretizer.get_feature_names_out	  sU    ( 	.///0~FF4$$ 	G=66~FFF r7   )r1   )NNr3   )r   
__module____qualname____doc__r	   r   r   r
   typerK   rS   rT   r0   dict__annotations__r6   r   rf   rV   r   r   r   rJ   r7   r5   r   r      s        e eP 8Haf===|L:CCCDDEZ A A ABBCJ   
  '$RZ 8994@hxD@@@$G'(-$ $D   6 ) ) ) ) ) )& \555s s s 65sj  2% % %N% % %N     r7   r   )rY   numbersr   numpyrK   sklearn.baser   r   r   sklearn.preprocessing._encodersr   sklearn.utilsr   sklearn.utils._param_validationr	   r
   r   sklearn.utils.statsr   sklearn.utils.validationr   r   r   r   r   r   rJ   r7   r5   <module>r      s'  
            F F F F F F F F F F 9 9 9 9 9 9 " " " " " " I I I I I I I I I I 4 4 4 4 4 4             K K K K K' K K K K Kr7   