
    3;ji,                        d dl Z d dlZd dlZd dlmZ d dlmZ d dlZd dl	m
Z d dlmZmZmZ d dlmZ d dlmZmZmZmZmZmZmZmZmZ d dlmZmZ d dlm Z m!Z! d d	l"m#Z#m$Z$ d d
l%m&Z& d dl'm(Z(m)Z)m*Z* g dZ+ G d deed          Z, G d deed          Z- e!ddgdg e eddd          g e eddd          gdgdd          d dddd            Z.d"dZ/d"dZ0 G d  d!eed          Z1dS )#    N)defaultdict)Integral)BaseEstimatorTransformerMixin_fit_context)column_or_1d)	_convert_to_numpy_find_matching_floating_dtype_is_numpy_namespace_isindeviceget_namespaceget_namespace_and_deviceindexing_dtypexpx)_encode_unique)Intervalvalidate_params)type_of_targetunique_labels)min_max_axis)_num_samplescheck_arraycheck_is_fitted)LabelBinarizerLabelEncoderMultiLabelBinarizerlabel_binarizec                   :     e Zd ZdZd Zd Zd Zd Z fdZ xZ	S )r   a  Encode target labels with value between 0 and n_classes-1.

    This transformer should be used to encode target values, *i.e.* `y`, and
    not the input `X`.

    Read more in the :ref:`User Guide <preprocessing_targets>`.

    .. versionadded:: 0.12

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Holds the label for each class.

    See Also
    --------
    OrdinalEncoder : Encode categorical features using an ordinal encoding
        scheme.
    OneHotEncoder : Encode categorical features as a one-hot numeric array.

    Examples
    --------
    `LabelEncoder` can be used to normalize labels.

    >>> from sklearn.preprocessing import LabelEncoder
    >>> le = LabelEncoder()
    >>> le.fit([1, 2, 2, 6])
    LabelEncoder()
    >>> le.classes_
    array([1, 2, 6])
    >>> le.transform([1, 1, 2, 6])
    array([0, 0, 1, 2]...)
    >>> le.inverse_transform([0, 0, 1, 2])
    array([1, 1, 2, 6])

    It can also be used to transform non-numerical labels (as long as they are
    hashable and comparable) to numerical labels.

    >>> le = LabelEncoder()
    >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
    LabelEncoder()
    >>> list(le.classes_)
    [np.str_('amsterdam'), np.str_('paris'), np.str_('tokyo')]
    >>> le.transform(["tokyo", "tokyo", "paris"])
    array([2, 2, 1]...)
    >>> list(le.inverse_transform([2, 2, 1]))
    [np.str_('tokyo'), np.str_('tokyo'), np.str_('paris')]
    c                 P    t          |d          }t          |          | _        | S )zFit label encoder.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        self : returns an instance of self.
            Fitted label encoder.
        Twarnr   r   classes_selfys     V/root/voice-cloning/.venv/lib/python3.11/site-packages/sklearn/preprocessing/_label.pyfitzLabelEncoder.fitZ   s(     &&&

    c                 Z    t          |d          }t          |d          \  | _        }|S )a  Fit label encoder and return encoded labels.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : array-like of shape (n_samples,)
            Encoded labels.
        Tr"   return_inverser$   r&   s     r)   fit_transformzLabelEncoder.fit_transformk   s4     &&&"1T:::qr+   c                     t          |            t          |          \  }}t          || j        j        d          }t          |          dk    r|                    g           S t          || j                  S )a  Transform labels to normalized encoding.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : array-like of shape (n_samples,)
            Labels as normalized encodings.
        T)dtyper#   r   )uniques)r   r   r   r%   r1   r   asarrayr   )r'   r(   xp_s       r)   	transformzLabelEncoder.transform|   sr     	a  A$-"5DAAA??a::b>>!q$-0000r+   c           	         t          |            t          |          \  }}t          |d          }t          |          dk    r|                    g           S t          j        ||                    | j        j	        d         t          |                    |          }|j	        d         rt          dt          |          z            |                    |          }|                    | j        |d          S )a  Transform labels back to original encoding.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y_original : ndarray of shape (n_samples,)
            Original encoding.
        Tr"   r   r   r4   z'y contains previously unseen labels: %saxis)r   r   r   r   r3   r   	setdiff1daranger%   shaper   
ValueErrorstrtake)r'   r(   r4   r5   diffs        r)   inverse_transformzLabelEncoder.inverse_transform   s     	a  A&&&??a::b>>!}IIdm)!,VAYYI??
 
 

 :a= 	TFTRSSSJJqMMwwt}aaw000r+   c                     t                                                      }d|_        d|j        _        d|j        _        |S )NTF)super__sklearn_tags__array_api_support
input_tagstwo_d_arraytarget_tagsone_d_labelsr'   tags	__class__s     r)   rF   zLabelEncoder.__sklearn_tags__   s:    ww''))!%&+#(,%r+   )
__name__
__module____qualname____doc__r*   r/   r6   rC   rF   __classcell__rN   s   @r)   r   r   (   s        / /b  "  "1 1 1,1 1 1<        r+   r   )auto_wrap_output_keysc                        e Zd ZU dZegegdgdZeed<   dddddZ e	d	
          d             Z
d Zd ZddZ fdZ xZS )r   a
  Binarize labels in a one-vs-all fashion.

    Several regression and binary classification algorithms are
    available in scikit-learn. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    At learning time, this simply consists in learning one regressor
    or binary classifier per class. In doing so, one needs to convert
    multi-class labels to binary labels (belong or does not belong
    to the class). `LabelBinarizer` makes this process easy with the
    transform method.

    At prediction time, one assigns the class for which the corresponding
    model gave the greatest confidence. `LabelBinarizer` makes this easy
    with the :meth:`inverse_transform` method.

    Read more in the :ref:`User Guide <preprocessing_targets>`.

    Parameters
    ----------
    neg_label : int, default=0
        Value with which negative labels must be encoded.

    pos_label : int, default=1
        Value with which positive labels must be encoded.

    sparse_output : bool, default=False
        True if the returned array from transform is desired to be in sparse
        CSR format.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Holds the label for each class.

    y_type_ : str
        Represents the type of the target data as evaluated by
        :func:`~sklearn.utils.multiclass.type_of_target`. Possible type are
        'continuous', 'continuous-multioutput', 'binary', 'multiclass',
        'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.

    sparse_input_ : bool
        `True` if the input data to transform is given as a sparse matrix,
         `False` otherwise.

    See Also
    --------
    label_binarize : Function to perform the transform operation of
        LabelBinarizer with fixed classes.
    OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
        scheme.

    Examples
    --------
    >>> from sklearn.preprocessing import LabelBinarizer
    >>> lb = LabelBinarizer()
    >>> lb.fit([1, 2, 6, 4, 2])
    LabelBinarizer()
    >>> lb.classes_
    array([1, 2, 4, 6])
    >>> lb.transform([1, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    Binary targets transform to a column vector

    >>> lb = LabelBinarizer()
    >>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
    array([[1],
           [0],
           [0],
           [1]])

    Passing a 2D matrix for multilabel classification

    >>> import numpy as np
    >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
    LabelBinarizer()
    >>> lb.classes_
    array([0, 1, 2])
    >>> lb.transform([0, 1, 2, 1])
    array([[1, 0, 0],
           [0, 1, 0],
           [0, 0, 1],
           [0, 1, 0]])
    boolean	neg_label	pos_labelsparse_output_parameter_constraintsr      Fc                0    || _         || _        || _        d S NrX   )r'   rY   rZ   r[   s       r)   __init__zLabelBinarizer.__init__  s    ""*r+   Tprefer_skip_nested_validationc                 b   | j         | j        k    r t          d| j          d| j         d          | j        r5| j        dk    s| j         dk    rt          d| j         d| j                    t	          |          \  }}|r.| j        r't          |          st          d|j         d          t          |d	
          | _        d| j        v rt          d          t          |          dk    rt          d|z            t          j        |          | _        t          |          | _        | S )aa  Fit label binarizer.

        Parameters
        ----------
        y : ndarray of shape (n_samples,) or (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification.

        Returns
        -------
        self : object
            Returns the instance itself.
        z
neg_label=z& must be strictly less than pos_label=.r   z`Sparse binarization is only supported with non zero pos_label and zero neg_label, got pos_label=z and neg_label=>`sparse_output=True` is not supported for array API namespace <. Use `sparse_output=False` to return a dense array instead.r(   )
input_namemultioutput@Multioutput target data is not supported with label binarizationy has 0 samples: %r)rY   rZ   r?   r[   r   r   rO   r   y_type_r   spissparsesparse_input_r   r%   )r'   r(   r4   is_array_apis       r)   r*   zLabelBinarizer.fit  s    >T^++/T^ / /!^/ / /  
  	4>Q#6#6$.A:M:MM!^M M<@NM M   )++L 	D. 	7J27N7N 	M[M M M   &aC888DL((R   ??a2Q6777[^^%a((r+   c                 R    |                      |                              |          S )a  Fit label binarizer/transform multi-class labels to binary labels.

        The output of transform is sometimes referred to as
        the 1-of-K coding scheme.

        Parameters
        ----------
        y : {ndarray, sparse matrix} of shape (n_samples,) or                 (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification. Sparse matrix can be
            CSR, CSC, COO, DOK, or LIL.

        Returns
        -------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Shape will be (n_samples, 1) for binary problems. Sparse matrix
            will be of CSR format.
        )r*   r6   r&   s     r)   r/   zLabelBinarizer.fit_transformN  s"    ( xx{{$$Q'''r+   c                    t          |            t          |          \  }}|r.| j        r't          |          st	          d|j         d          t          |                              d          }|r)| j                            d          st	          d          t          || j
        | j        | j        | j                  S )a  Transform multi-class labels to binary labels.

        The output of transform is sometimes referred to by some authors as
        the 1-of-K coding scheme.

        Parameters
        ----------
        y : {array, sparse matrix} of shape (n_samples,) or                 (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification. Sparse matrix can be
            CSR, CSC, COO, DOK, or LIL.

        Returns
        -------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Shape will be (n_samples, 1) for binary problems. Sparse matrix
            will be of CSR format.
        re   rf   
multilabelz0The object was not fitted with multilabel input.)classesrZ   rY   r[   )r   r   r[   r   r?   rO   r   
startswithrk   r   r%   rZ   rY   )r'   r(   r4   ro   y_is_multilabels        r)   r6   zLabelBinarizer.transformd  s    ( 	(++L 	D. 	7J27N7N 	M[M M M   )++66|DD 	Q4<#:#:<#H#H 	QOPPPMnn,
 
 
 	
r+   Nc                    t          |            t          |          \  }}|r.| j        r't          |          st	          d|j         d          || j        | j        z   dz  }| j        dk    rt          || j
        |          }nt          || j        | j
        ||          }| j        rt          j        |          }n(t          j        |          r|                                }|S )a  Transform binary labels back to multi-class labels.

        Parameters
        ----------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Target values. All sparse matrices are converted to CSR before
            inverse transformation.

        threshold : float, default=None
            Threshold used in the binary and multi-label cases.

            Use 0 when ``Y`` contains the output of :term:`decision_function`
            (classifier).
            Use 0.5 when ``Y`` contains the output of :term:`predict_proba`.

            If None, the threshold is assumed to be half way between
            neg_label and pos_label.

        Returns
        -------
        y_original : {ndarray, sparse matrix} of shape (n_samples,)
            Target values. Sparse matrix will be of CSR format.

        Notes
        -----
        In the case when the binary labels are fractional
        (probabilistic), :meth:`inverse_transform` chooses the class with the
        greatest value. Typically, this allows to use the output of a
        linear model's :term:`decision_function` method directly as the input
        of :meth:`inverse_transform`.
        zY`LabelBinarizer` was fitted on a sparse matrix, and therefore cannot inverse transform a z array back to a sparse matrix.Ng       @
multiclassr9   )r   r   rn   r   r?   rO   rZ   rY   rk   _inverse_binarize_multiclassr%   _inverse_binarize_thresholdingrl   
csr_matrixrm   toarray)r'   Y	thresholdr4   ro   y_invs         r)   rC   z LabelBinarizer.inverse_transform  s   @ 	(++L 	D. 	7J27N7N 	T'){T T T  
 $.8C?I<<''0DMbIIIEE24<	b  E  	$M%((EE[ 	$MMOOEr+   c                 x    t                                                      }d|j        _        d|j        _        |S NFT)rE   rF   rH   rI   rJ   rK   rL   s     r)   rF   zLabelBinarizer.__sklearn_tags__  2    ww''))&+#(,%r+   r_   )rO   rP   rQ   rR   r   r\   dict__annotations__r`   r   r*   r/   r6   rC   rF   rS   rT   s   @r)   r   r      s         V Vr ZZ#$ $D    %&% + + + + +
 \555/ / 65/b( ( (,)
 )
 )
V9 9 9 9v        r+   r   
array-likezsparse matrixneither)closedrW   )r(   rs   rY   rZ   r[   Tra   r]   FrX   c                
   t          | t                    st          | dddd          } n%t          |           dk    rt	          d| z            ||k    r#t	          d                    ||                    |r/|dk    s|dk    r#t	          d	                    ||                    |dk    }|r| }t          |           }d
|v rt	          d          |dk    rt	          d          t          |           \  }}}	|r)|r't          |          st	          d|j	         d          	 |
                    ||	          }n2# t          t          f$ r}
t	          d|j	         d          |
d}
~
ww xY wt          | d          r| j        d         nt          |           }|j        d         }t          | d          r#|                    | j        d          r| j        }nt#          |          }|dk    rM|dk    r?|rt%          j        |dft(                    S |                    |df|          }||z  }|S |dk    rd}|                    |          }|dk    rht          | d          r| j        d         nt          | d                   }||k    r0t	          d                    |t/          |                               |dv r!t1          |           } t3          | ||          }| |         }|                    ||          }|                    ||          }|                    |
                    dg|	          |                    |d          f          }|                    ||          }t%          j        t?          ||          t?          ||          t?          ||          f||f           }|s)|
                    |                                 |	          }n|dk    r|r=t%          j        |           }|dk    r"|                    |j!        |          }||_!        nbt%          j"        |           r|                                  } |
                    | |	d!"          }|dk    r	|||dk    <   nt	          d#|z            |s3|dk    r	|||dk    <   |r	d|||k    <   |                    ||d$          }n&|j!                            t(          d$          |_!        |#                    ||k              r"|                    ||          }|dd|f         }|dk    r0|r|ddd%gf         }n |$                    |ddd%f         d&          }|S )'a  Binarize labels in a one-vs-all fashion.

    Several regression and binary classification algorithms are
    available in scikit-learn. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    This function makes it possible to compute this transformation for a
    fixed set of class labels known ahead of time.

    Parameters
    ----------
    y : array-like or sparse matrix
        Sequence of integer labels or multilabel data to encode.

    classes : array-like of shape (n_classes,)
        Uniquely holds the label for each class.

    neg_label : int, default=0
        Value with which negative labels must be encoded.

    pos_label : int, default=1
        Value with which positive labels must be encoded.

    sparse_output : bool, default=False,
        Set to true if output binary array is desired in CSR sparse format.

    Returns
    -------
    Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
        Shape will be (n_samples, 1) for binary problems. Sparse matrix will
        be of CSR format.

    See Also
    --------
    LabelBinarizer : Class used to wrap the functionality of label_binarize and
        allow for fitting to classes independently of the transform operation.

    Examples
    --------
    >>> from sklearn.preprocessing import label_binarize
    >>> label_binarize([1, 6], classes=[1, 2, 4, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    The class ordering is preserved:

    >>> label_binarize([1, 6], classes=[1, 6, 4, 2])
    array([[1, 0, 0, 0],
           [0, 1, 0, 0]])

    Binary targets transform to a column vector

    >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
    array([[1],
           [0],
           [0],
           [1]])
    r(   csrFN)rg   accept_sparse	ensure_2dr1   r   rj   z7neg_label={0} must be strictly less than pos_label={1}.zuSparse binarization is only supported with non zero pos_label and zero neg_label, got pos_label={0} and neg_label={1}rh   ri   unknownz$The type of target data is not knownz?`sparse_output=True` is not supported for array API 'namespace z='. Use `sparse_output=False` to return a dense array instead.r8   z>`classes` contains unsupported dtype for array API namespace 'z'.r>   r1   integralbinaryr]   r1      rw   multilabel-indicatorz:classes {0} mismatch with the labels {1} found in the data)r   rw   r9   r:   r>   T)r   copyz7%s target data is not supported with label binarization)r   )r   r]   )%
isinstancelistr   r   r?   formatr   r   r   rO   r3   	TypeErrorhasattrr>   lenisdtyper1   r   rl   rz   intzerossortr   r   r   searchsortedastypeconcatcumulative_sum	full_liker	   r{   datarm   anyreshape)r(   rs   rY   rZ   r[   
pos_switchy_typer4   ro   device_e	n_samples	n_classes
int_dtype_r|   sorted_classy_n_classesy_in_classesy_seenindicesindptrr   s                         r)   r   r     sD   L a 8 #Ue4
 
 
 ??a2Q6777IELL9 
 
 	
  
)q..INN vi++	
 
 	
 aJ J	AFN
 
 	
 ?@@@ 8 ; ;Bg 
 
.A".E.E 
I+I I I
 
 	
**WW*55	"          
 
 	 &a11=

s1vvIa Iq' (rzz!':>> (W

#B''
>> }i^3????HHi^:H>>Y!^^!F777##L'''$+Aw$7$7FagajjS1YY##LSS]1--    )))OO QB///<//,77yyz::

A3w
//!!,Q!77
 
 ||GY// M!$2...!'b111!&R000
 i(
 
 
  	8

199;;w
77A	)	)	) 	&a  AA~~||AFI66{1~~  IIKK

1W4
88AA~~%!q&	 EN
 
 	
  	0>>!Aa1fI 	" !Aa9nIIa%I00s// 
vvg%&& //,88aaajM 	.!!!bT'
AA

1QQQU8W--AHs   +E E2E--E2c                    t          j        |           rt          j        |          }|                                 } | j        \  }}t          j        |          }t          | d          d         }t          j        | j	                  }t          j
        ||          }t          j        || j        k              }	|d         dk    r(t          j        |	t          | j                  g          }	t          j        |	| j	        dd                   }
t          j        | j        dg          }||	|
                  }d|t          j        |dk              d         <   t          j        |          |dk    |                                dk    z           }|D ]N}| j        | j	        |         | j	        |dz                     }|t          j        ||                   d         ||<   O||         S t)          | |          \  }}}|                    ||          }|                    | d          }|                    |d|j        d         dz
            }||         S )z}Inverse label binarization transformation for multiclass.

    Multiclass uses the maximal score instead of a threshold.
    r]   r   r   Nr9   r8   r:   )rl   rm   npr3   tocsrr>   r=   r   rB   r   repeatflatnonzeror   appendr   r   r   whereravelr<   r   argmaxclip)r(   rs   r4   r   	n_outputsoutputsrow_maxrow_nnzy_data_repeated_maxy_i_all_argmaxindex_first_argmax	y_ind_ext
y_i_argmaxsamplesiindr5   r   r   s                      r)   rx   rx     s   
 
{1~~ ' *W%% GGII w	9)I&&q!$$Q''!(## i99(;qv(EFF 2;!Y~AF}EEN  _^QXcrc]KKIai!--	~.@AB
01
28GqL))!,- )I&&!18L'MN 	C 	CA)AHQK!(1q5/9:C#BL#$>$>?BJqMMz""1!;;;Aw**WW*55))AA)&&'''1gmA&6&:;;wr+   c                 X   |dk    rC| j         dk    r8| j        d         dk    r't          d                    | j                            t	          | |          \  }}}|                    ||          }|dk    r+| j        d         |j        d         k    rt          d          t          | |          }t          | d	          r#|                    | j	        d
          r| j	        }nt          |          }t          j        |           r|dk    r[| j        dvr|                                 } t          j        | j        |k    t"                    | _        |                                  na|                    |                                 |k    ||          } n2|                    |                    | ||          |k    ||          } |dk    rt          j        |           r|                                 } | j         dk    r#| j        d         dk    r|| dddf                  S |j        d         dk    r)|                    |d         t+          |                     S ||                    | d                   S |dk    r| S t          d                    |                    )z=Inverse label binarization transformation using thresholding.r      r]   z'output_type='binary', but y.shape = {0}r9   r8   r   zAThe number of class is not equal to the number of dimension of y.r1   r   )r   cscr   )r1   r   N)r   r   z{0} format is not supported)ndimr>   r?   r   r   r3   r
   r   r   r1   r   rl   rm   r   r   arrayr   r   eliminate_zerosr{   r   r   r   )	r(   output_typers   r}   r4   r5   r   dtype_r   s	            r)   ry   ry     s    h16Q;;171:>>BII!'RRSSS-aB777NB7jjj11Gh171:q1A#A#AO
 
 	
 +1444Fq' (rzz!':>> (W

#B''
 
{1~~ 
q==x~--GGIIXafy0<<<AF

199;;2*W
UUAAJJJJqwJ77)C  
 
 h;q>> 			A6Q;;171:??1QQQT7##}Q1$$yySVV444rzz!U3344	.	.	. 6==kJJKKKr+   c                        e Zd ZU dZddgdgdZeed<   ddddZ ed	
          d             Z	 ed	
          d             Z
d Zd Zd Zd Z fdZ xZS )r   a   Transform between iterable of iterables and a multilabel format.

    Although a list of sets or tuples is a very intuitive format for multilabel
    data, it is unwieldy to process. This transformer converts between this
    intuitive format and the supported multilabel format: a (samples x classes)
    binary matrix indicating the presence of a class label.

    Parameters
    ----------
    classes : array-like of shape (n_classes,), default=None
        Indicates an ordering for the class labels.
        All entries should be unique (cannot contain duplicate classes).

    sparse_output : bool, default=False
        Set to True if output binary array is desired in CSR sparse format.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        A copy of the `classes` parameter when provided.
        Otherwise it corresponds to the sorted set of classes found
        when fitting.

    See Also
    --------
    OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
        scheme.

    Examples
    --------
    >>> from sklearn.preprocessing import MultiLabelBinarizer
    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit_transform([(1, 2), (3,)])
    array([[1, 1, 0],
           [0, 0, 1]])
    >>> mlb.classes_
    array([1, 2, 3])

    >>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}])
    array([[0, 1, 1],
           [1, 0, 0]])
    >>> list(mlb.classes_)
    ['comedy', 'sci-fi', 'thriller']

    A common mistake is to pass in a list, which leads to the following issue:

    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit(['sci-fi', 'thriller', 'comedy'])
    MultiLabelBinarizer()
    >>> mlb.classes_
    array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't',
        'y'], dtype=object)

    To correct this, the list of labels should be passed in as:

    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit([['sci-fi', 'thriller', 'comedy']])
    MultiLabelBinarizer()
    >>> mlb.classes_
    array(['comedy', 'sci-fi', 'thriller'], dtype=object)
    r   NrW   rs   r[   r\   Fc                "    || _         || _        d S r_   r   )r'   rs   r[   s      r)   r`   zMultiLabelBinarizer.__init___  s    *r+   Tra   c                    d| _         | j        :t          t          t          j                            |                              }nMt          t          | j                            t          | j                  k     rt          d          | j        }t          d |D                       rt          nt          }t          j        t          |          |          | _        || j        dd<   | S )a  Fit the label sets binarizer, storing :term:`classes_`.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        self : object
            Fitted estimator.
        NztThe classes argument contains duplicate classes. Remove these duplicates before passing them to MultiLabelBinarizer.c              3   @   K   | ]}t          |t                    V  d S r_   r   r   .0cs     r)   	<genexpr>z*MultiLabelBinarizer.fit.<locals>.<genexpr>  s,      ??!:a--??????r+   r   )_cached_dictrs   sortedset	itertoolschainfrom_iterabler   r?   allr   objectr   emptyr%   )r'   r(   rs   r1   s       r)   r*   zMultiLabelBinarizer.fitc  s      !<S!>!>q!A!ABBCCGGT\""##c$,&7&777/   lG??w?????KVWU;;;"aaar+   c                 ~   | j         (|                     |                              |          S d| _        t	          t
                    }|j        |_        |                     ||          }t          ||j
                  }t          d |D                       rt
          nt          }t          j        t          |          |          }||dd<   t          j        |d          \  | _        }t          j        ||j                 |j        j                  |_        | j        s|                                }|S )aM  Fit the label sets binarizer and transform the given label sets.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]`
            is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR
            format.
        Nkeyc              3   @   K   | ]}t          |t                    V  d S r_   r   r   s     r)   r   z4MultiLabelBinarizer.fit_transform.<locals>.<genexpr>  s,      ;;!:a--;;;;;;r+   r   Tr-   )rs   r*   r6   r   r   r   __len__default_factory
_transformr   getr   r   r   r   r   uniquer%   r3   r   r1   r[   r{   )r'   r(   class_mappingyttmpr1   inverses          r)   r/   z!MultiLabelBinarizer.fit_transform  s   $ <#88A;;((+++  $C(((5(=%__Q.. ](9::: ;;s;;;;;GS777aaa!#=!N!N!NwZ
 32:;KLLL
! 	B	r+   c                     t          |            |                                 }|                     ||          }| j        s|                                }|S )a  Transform the given label sets.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        y_indicator : array or CSR matrix, shape (n_samples, n_classes)
            A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in
            `y[i]`, and 0 otherwise.
        )r   _build_cacher   r[   r{   )r'   r(   class_to_indexr   s       r)   r6   zMultiLabelBinarizer.transform  sS      	**,,__Q//! 	B	r+   c           
          | j         Ft          t          | j        t	          t          | j                                                | _         | j         S r_   )r   r   zipr%   ranger   )r'   s    r)   r   z MultiLabelBinarizer._build_cache  sB    $ $Sc$->P>P8Q8Q%R%R S SD  r+   c                    t          j         d          }t          j         ddg          }t                      }|D ]}t                      }|D ]C}	 |                    ||                    # t          $ r |                    |           Y @w xY w|                    |           |                    t          |                     |r;t          j        d	                    t          |t                                         t          j        t          |          t                    }	t          j        |	||ft          |          dz
  t          |          f          S )a/  Transforms the label sets with a given mapping.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        class_mapping : Mapping
            Maps from label to column index in label indicator matrix.

        Returns
        -------
        y_indicator : sparse matrix of shape (n_samples, n_classes)
            Label indicator matrix. Will be of CSR format.
        r   r   z%unknown class(es) {0} will be ignoredr   r   r]   r   )r   r   addKeyErrorextendr   r   warningsr#   r   r   r@   r   onesr   rl   rz   )
r'   r(   r   r   r   r   labelsindexlabelr   s
             r)   r   zMultiLabelBinarizer._transform  sh   $ +c""S1#&&%% 	( 	(FEEE ' ''IImE23333 ' ' 'KK&&&&&'NN5!!!MM#g,,'''' 	M7>>vgSV?W?W?WXX   ws7||3///}7F#CKK!OS=O=O+P
 
 
 	
s   A,,BBc                     t                      j        d         t           j                  k    r@t	          d                    t           j                  j        d                             t          j                  r                                t          j	                  dk    r<t          t          j        j	        ddg                    dk    rt	          d           fdt          j        dd         j        dd                   D             S t          j        ddg          }t          |          dk    r"t	          d                    |                     fd	D             S )
a  Transform the given indicator matrix into label sets.

        Parameters
        ----------
        yt : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            A matrix containing only 1s ands 0s.

        Returns
        -------
        y_original : list of tuples
            The set of labels for each sample such that `y[i]` consists of
            `classes_[j]` for each `yt[i, j] == 1`.
        r]   z/Expected indicator for {0} classes, but got {1}r   z+Expected only 0s and 1s in label indicator.c           	      ~    g | ]9\  }}t          j                            j        ||                             :S  )tupler%   rA   r   )r   startendr'   r   s      r)   
<listcomp>z9MultiLabelBinarizer.inverse_transform.<locals>.<listcomp>  sP       E3 dm((E#I)>??@@  r+   Nr   z8Expected only 0s and 1s in label indicator. Also got {0}c                 ^    g | ])}t          j                            |                    *S r  )r  r%   compress)r   
indicatorsr'   s     r)   r  z9MultiLabelBinarizer.inverse_transform.<locals>.<listcomp>  s1    SSS*E$-00<<==SSSr+   )r   r>   r   r%   r?   r   rl   rm   r   r   r   r<   r   r   )r'   r   
unexpecteds   `` r)   rC   z%MultiLabelBinarizer.inverse_transform  s    	8A;#dm,,,,AHH&&    ;r?? 	TB27||q  Sbg1v)F)F%G%G!%K%K !NOOO    "%binbim"D"D   
 b1a&11J:"" NUU"   
 TSSSPRSSSSr+   c                 x    t                                                      }d|j        _        d|j        _        |S r   )rE   rF   rH   rI   rJ   two_d_labelsrL   s     r)   rF   z$MultiLabelBinarizer.__sklearn_tags__!  r   r+   )rO   rP   rQ   rR   r\   r   r   r`   r   r*   r/   r6   r   r   rC   rF   rS   rT   s   @r)   r   r     s'        < <~ !$'#$ $D   
 #'e + + + + + \555  65@ \555) ) 65)V  4! ! !&
 &
 &
P'T 'T 'TR        r+   r   r_   )2r   r   r   collectionsr   numbersr   numpyr   scipy.sparsesparserl   sklearn.baser   r   r   sklearn.utilsr   sklearn.utils._array_apir	   r
   r   r   r   r   r   r   r   sklearn.utils._encoder   r   sklearn.utils._param_validationr   r   sklearn.utils.multiclassr   r   sklearn.utils.sparsefuncsr   sklearn.utils.validationr   r   r   __all__r   r   r   rx   ry   r   r  r+   r)   <module>r     s         # # # # # #                 F F F F F F F F F F & & & & & &
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3 2 2 2 2 2 2 2 E E E E E E E E B B B B B B B B 2 2 2 2 2 2 O O O O O O O O O O  M M M M M#]$ M M M M`V V V V V%}D V V V Vr O, >hxtIFFFGhxtIFFFG#  #'	 	 	 -.% W W W W	 	Wt,  ,  ,  , ^4L 4L 4L 4LnJ J J J J*MQU J J J J J Jr+   