
    3;ji                         d Z ddlmZ ddlZddlmZ ddlmZm	Z	m
Z
 ddlmZ ddlmZmZ  e
dd	gdg e	d
dh          gdg eeddd          gdd          d
dddd            ZdS )z!Determination of parameter bounds    )RealN)LabelBinarizer)Interval
StrOptionsvalidate_params)safe_sparse_dot)check_arraycheck_consistent_lengthz
array-likezsparse matrixsquared_hingelogbooleanneither)closed)Xylossfit_interceptintercept_scalingT)prefer_skip_nested_validationg      ?)r   r   r   c          	      R   t          | d          } t          | |           t          d                              |          j        }t          j        t          j        t          ||                               }|rt          j	        t          j
        |          df|t          j        |          j                  }t          |t          t          j        ||                                                              }|dk    rt          d          |d	k    rd
|z  S d|z  S )a  Return the lowest bound for `C`.

    The lower bound for `C` is computed such that for `C` in `(l1_min_C, infinity)`
    the model is guaranteed not to be empty. This applies to l1 penalized
    classifiers, such as :class:`sklearn.svm.LinearSVC` with penalty='l1' and
    :class:`sklearn.linear_model.LogisticRegression` with `l1_ratio=1`.

    This value is valid if `class_weight` parameter in `fit()` is not set.

    For an example of how to use this function, see
    :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_path.py`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training vector, where `n_samples` is the number of samples and
        `n_features` is the number of features.

    y : array-like of shape (n_samples,)
        Target vector relative to X.

    loss : {'squared_hinge', 'log'}, default='squared_hinge'
        Specifies the loss function.
        With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).
        With 'log' it is the loss of logistic regression models.

    fit_intercept : bool, default=True
        Specifies if the intercept should be fitted by the model.
        It must match the fit() method parameter.

    intercept_scaling : float, default=1.0
        When fit_intercept is True, instance vector x becomes
        [x, intercept_scaling],
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        It must match the fit() method parameter.

    Returns
    -------
    l1_min_c : float
        Minimum value for C.

    Examples
    --------
    >>> from sklearn.svm import l1_min_c
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_features=20, random_state=42)
    >>> print(f"{l1_min_c(X, y, loss='squared_hinge', fit_intercept=True):.4f}")
    0.0044
    csc)accept_sparse)	neg_label   )dtypeg        zUIll-posed l1_min_c calculation: l1 will always select zero coefficients for this datar   g      ?g       @)r	   r
   r   fit_transformTnpmaxabsr   fullsizearrayr   dot
ValueError)r   r   r   r   r   Ydenbiass           M/root/voice-cloning/.venv/lib/python3.11/site-packages/sklearn/svm/_bounds.pyl1_min_cr+      s   | 	AU+++AAq!!!$$$221557A
&1--..
/
/C 3wWQZZO.bh?P6Q6Q6W
 
 
 #s26!T??++//1122
czz5
 
 	
 SySy    )__doc__numbersr   numpyr   sklearn.preprocessingr   sklearn.utils._param_validationr   r   r   sklearn.utils.extmathr   sklearn.utils.validationr	   r
   r+    r,   r*   <module>r5      s(   ' '
           0 0 0 0 0 0 Q Q Q Q Q Q Q Q Q Q 1 1 1 1 1 1 I I I I I I I I O,^_e4556#&htQYGGGH  #'	 	 	 +$RU H H H H	 	H H Hr,   