
    %VjiP                     >   d dl Z d dlZd dlmZmZmZ d dlZd dlmc m	c m
c mZ d dlmc m	c mZ d dlm	Z	 d dlmZmZ d dlmZ d dlmZ d dlmZ d dlmZ dd	lmZmZ ej        j        Z G d
 de j                   Z!dededede"e#e$e         f         de%e!e!f         f
dZ&dedede"e#e$e         f         dee%eej'        e(f         eej'        e)f         f                  fdZ*dededefdZ+dedede)fdZ,dede-e)         fdZ.dedede#fdZ/dede#defdZ0deddfdZ1d Z2e2dej'        dej'        dej'        fd            Z3e2dej'        dej'        dej'        fd            Z4e2dej'        dej'        dej'        fd             Z5dede6fd!Z7deded"e)defd#Z8dS )$    N)CallableOptionalUnion)FakeQuantizeBaseObserverBase)_is_activation_post_process)getattr_from_fqn)GraphModule)Node   )NSNodeTargetTypeNSResultsTypec                       e Zd Z ej                    Z ej                    Z ej                    Z ej                    Z ej                    Z	dS )NodeInputOrOutputTypeN)
__name__
__module____qualname__enumautoFP32INT8FP16UNKNOWNFP32_OR_INT8     N/root/voice-cloning/.venv/lib/python3.11/site-packages/torch/ao/ns/fx/utils.pyr   r      sQ        49;;D49;;D49;;DdikkG
 49;;LLLr   r   nodegm
logger_clsnode_type_to_io_type_mapreturnc                 n   |d         }|d         }|d         }|d         }|d         }|d         }	|d         }
|d         }| j         d	k    r| j        |v rt          j        t          j        fS | j        |v rt          j        t          j        fS | j        |v rt          j        t          j        fS | j        |v rAt          | |d
          }t          |t                    sJ t          ||||          \  }}||fS t          j
        t          j
        fS | j         dk    r;| j         dk    sJ t          | j        t                    sJ t          || j                  t          fd|
D                       }t          |t          t          f          s|rAt          | |d
          }t          |t                    sJ t          ||||          \  }}||fS t          fd|D                       }t          fd|	D                       }|rt          j        t          j        fS |rt          j        t          j        fS t          j
        t          j
        fS | j         dk    r:| j        dk    rKt          | |d
          }t          |t                    sJ t          ||||          \  }}|t          j        fS | j        dk    rwt          | |d
          }t          |t                    sJ t          ||||          \  }}t          | |d          }|t           j        u sJ | d            |t          j        fS | j        |v rAt          | |d
          }t          |t                    sJ t          ||||          \  }}||fS t          j
        t          j
        fS t          j
        t          j
        fS )Nfuns_io_type_fp32funs_io_type_fp16funs_io_type_int8funs_io_type_fp32_or_int8mods_io_type_fp32mods_io_type_int8mods_io_type_fp32_or_int8meths_io_type_fp32_or_int8call_functionr   call_modulec              3   8   K   | ]}t          |          V  d S N
isinstance.0target_typemods     r   	<genexpr>z7get_node_first_input_and_output_type.<locals>.<genexpr>N   sA       1
 1
 sK((1
 1
 1
 1
 1
 1
r   c              3   8   K   | ]}t          |          V  d S r/   r0   r2   s     r   r6   z7get_node_first_input_and_output_type.<locals>.<genexpr>a   A       )
 )
 sK(()
 )
 )
 )
 )
 )
r   c              3   8   K   | ]}t          |          V  d S r/   r0   r2   s     r   r6   z7get_node_first_input_and_output_type.<locals>.<genexpr>e   r8   r   call_method
dequantizetor   z handling needs to be added)optargetr   r   r   r   get_normalized_nth_inputr1   r   $get_node_first_input_and_output_typer   strr	   anyr   r   torchfloat16)r   r   r    r!   FUNS_IO_TYPE_FP32FUNS_IO_TYPE_FP16FUNS_IO_TYPE_INT8FUNS_IO_TYPE_FP32_OR_INT8MODS_IO_TYPE_FP32MODS_IO_TYPE_INT8MODS_IO_TYPE_FP32_OR_INT8METHS_IO_TYPE_FP32_OR_INT8	first_arg_prev_node_input_typeprev_node_output_type"is_known_fp32_or_int8_input_moduleis_known_fp32_input_moduleis_known_int8_input_module	prev_nodecur_node_dtype_targetr5   s                       @r   r@   r@   &   s    11DE01DE01DE 89T U01DE01DE 89T U!9:V!Ww/!!;+++).0E0JKK;+++).0E0JKK[---).0E0JKK[5550r1==Ii..... 52z+C %% *+@AA)13H3PQQ	M	!	!w-''''$+s+++++r4;//-0 1
 1
 1
 1
81
 1
 1
 .
 .
*
 sZ7GHII	B1	B 1r1==Ii..... 52z+C %% *+@AA%( )
 )
 )
 )
0)
 )
 )
 &
 &
" &) )
 )
 )
 )
0)
 )
 )
 &
 &
" & 	R).0E0JKK' 	R).0E0JKK)13H3PQQ	M	!	!;,&& 1r1==Ii..... 52z+C %% *+@+EFF[D  
 1r1==Ii..... 52z+C %%
 %=T2q$I$I!(EM999(EEE :99 *+@+EFF[6660r1==Ii..... 52z+C %% *+@AA%-/D/LMM%-/D/LMMr   c                 v   t          | |d          }t          |t                    sdS |d         }d }|j        dk    rh|j        t
          j        k    r |||dd          S |j        t          j        t          j	        t          j
        t          j        fv r |||dd          S dS |j        d	k    rt          |j        t                    sJ t          ||j                  t          t          j        t          j        t          j        t$          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j        t          j         t          j!        t$          j"        t$          j#        t$          j$        t$          j        t$          j%        t$          j&        f          rj'        j(        fS tS          fd
|D                       }|rtU          |||          S dS )z{
    Returns the qparams (scale, zero_point) of the first input to `node`,
    if they can be inferred from the graph.
    r   Nr*   c                 f   t          | ||          }t          | ||          }t          |t                    rt          |j        t                    sJ t          |t                    rt          |j        t                    sJ t          ||j                  }t          ||j                  }||fS r/   )r?   r1   r   r>   rA   r	   )r   r   scale_arg_idx
zp_arg_idx
scale_nodezp_node	scale_objzp_objs           r    _get_scale_zp_from_function_argsz@get_node_input_qparams.<locals>._get_scale_zp_from_function_args   s    -dBFF
*4Z@@*d++R
:;Lc0R0RRRR'4((LZ-L-LLLL$R):;;	!"gn556""r   r,   r         r-   c              3   8   K   | ]}t          |          V  d S r/   r0   )r3   r4   
module_objs     r   r6   z)get_node_input_qparams.<locals>.<genexpr>   sA       1
 1
 z;//1
 1
 1
 1
 1
 1
r   )+r?   r1   r   r=   r>   rC   quantize_per_tensortoqaddadd_relumulmul_relurA   r	   nnqLinearConv1dConv2dnniq
ConvReLU2dConv3dBatchNorm2dBatchNorm3dConvTranspose1dConvTranspose2dELU	GroupNormInstanceNorm1dInstanceNorm2dInstanceNorm3d	LayerNorm	Hardswish	LeakyReLUReLU6BNReLU2dBNReLU3d
ConvReLU1d
ConvReLU3d
LinearReLUscale
zero_pointrB   get_node_input_qparams)r   r   r!   rS   rK   r]   rP   ra   s          @r   r   r      s    )r155Ii&& t 89T U# # # |&&u88833Ir1aHHH#'3<#,!OOO33Ir1aHHHt 
	&	&)*C00000%b)*:;;




##"""	1
 
 	=: $j&;<<-0 1
 1
 1
 1
81
 1
 1
 .
 .
* . 	S))R9QRRR4r   c                    | j         dk    rt          || j                  }t          |          rt	          | j                  dk    sJ t          | j        d         t                    sJ | j        d         } t          | j        t                    sJ t          || j                  }t          |          rIt	          | j                  dk    sJ t          | j        d         t                    sJ | j        d         } | S )a  
    If node is not an observer, returns it.  If node is an observer,
    navigates up the graph and returns the first parent which is not an
    observer.  For example,

    graph: (node_non_obs), node = node_non_obs : returns node_non_obs
    graph: (node_non_obs -> obs0), node = obs0 : returns node_non_obs
    graph: (node_non_obs -> obs0 -> fq0), node = fq0 : returns node_non_obs
    r-   r   r   )	r=   r	   r>   r   lenargsr1   r   rA   r   r   node_objs      r   return_first_non_observer_noder      s     w-#B44&x00 
	$ty>>Q&&&&dilD111119Q<Ddk3/////'DK88H*844 $49~~****!$)A,55555y|Kr   c                 ~    | j         dk    r1t          || j                  }t          |t          j                  rdS dS )aO  
    Assumes that all non-param args occur first. Returns the number of
    non-param args expected for a node.  For example, for

      F.linear(x, weight, bias)

    Returns 1, because x is a non-param arg and weight and bias are params.
    For

      lstm_mod(x, hid)

    Returns 2, because both x and hid are non-param args.
    r-   r^   r   )r=   r	   r>   r1   nnLSTMr   s      r   get_number_of_non_param_argsr     sB    " w-#B44h(( 	1 1r   c                 ^    t           j                  dk    rg S  j        dk    r j        t          j        t          j        j        j        t          j        fv s4 j        t          j	        t          j        j        j	        t          j	        fv r fdt          d          D             }|S dgS )a-  
    Returns the indices of args of the node which we should attach
    loggers to, if input logging is enabled.

    For example,
    * for (x + y), returns [0, 1]
    * for (1 + y), returns [1]
    * for (x + 1), returns [0]
    * for (linear(x, w, b)) returns [0]
    * by default, returns [0]
    r   r,   c                 Z    g | ]'}t          j        |                   t          k    %|(S r   )typer   r   )r3   ir   s     r   
<listcomp>z4get_arg_indices_of_inputs_to_log.<locals>.<listcomp>?  s1    DDDdil););t)C)C!)C)C)Cr   r^   )r   r   r=   r>   rC   rd   ops	quantizedoperatorrf   range)r   results   ` r    get_arg_indices_of_inputs_to_logr   ,  s     49~~	w/!!	59#6#:HLIII;59ei&9&=x|LLLDDDDU1XXDDD3Jr   c                     d}| j         dv rt          j        | j                  }nP| j         dk    rEt	          | j        t
                    sJ t          || j                  }t          j        |          }|S )z
    Returns a string representation of the type of the function or module
    pointed to by this node, or '' for other node types.
     )r,   r:   r-   )r=   rC   typenamer>   r1   rA   r	   )r   r   r4   
target_mods       r   get_target_type_strr   D  su    
 Kw222nT[11	M	!	!$+s+++++%b$+66
nZ00r   results
model_namec                 
   i }|                                  D ]k\  }}d}|                                D ]B}|                                 D ]+\  }}||k    r t          |          sJ |d         d         }+,C||||<   f|||<   l|S )a	  
    Rekeys the layer name of a results dictionary to use node names
    from `model_name`.

    For example, transforms

        {'base_op_1_0': {'node_output': {'model_a':
          [{'ref_node_name': 'linear1', ...}]}}}

    into

        {'linear1': {'node_output': {'model_a':
          [{'ref_node_name': 'linear1', ...}]}}}

    Note: we cannot use these node names directly because they are not
    guaranteed to be consistent across models. This is why we extract
    the results first and rekey afterwards.
    Nr   ref_node_name)itemsvaluesr   )	r   r   new_resultsold_layer_nameresult_type_to_resultsnew_layer_namemodel_name_to_resultscur_model_namelist_of_resultss	            r   'rekey_logger_info_on_node_name_of_modelr   S  s    , K29--// A A..%;%B%B%D%D 	 	!3H3N3N3P3P  /!Z///////%4Q%7%HNN %*@K''*@K''r   c                 
   d}|                                  D ]X}|                                 D ]A}|                                D ]*\  }}t          |          dk    r|d         d         |} n+  |r|                                  D ]|}|                                 D ]c}||         }|                                D ]D\  }}||k    rt          t          |                    D ]}||         d         }|||         d<   Ed{dS dS )ay  
    If `fqn` entries are filled in for one of the models in `results`, copies
    them over to any models which do not have them filled out.

    A common use case benefitting from this is comparing a model prepared by
    quantization to a quantized model. In this case, the model prepared by
    quantization would have `fqn` entries, and the quantized model would not.
    Nr   fqn)r   r   r   r   )	r   model_name_with_fqnsr   r   r   model_resultsref_model_resultsr   r   s	            r   maybe_add_missing_fqnsr   z  sq     ").."2"2  %;%B%B%D%D 	 	!-B-H-H-J-J  )
M}%%))$Q'.:/9, 	6&-nn&6&6 	6 	6")?)F)F)H)H 6 6%$9:N$O!1F1L1L1N1N 6 6-J!%999 "3}#5#566 6 6/25925a(//666	6 	6	6 	6r   c                       fdS )Nc                  x   | ^}}}t          |t                    rt          |t                    s*t          |t                    rQt          |t                    r<g }t          ||          D ]'\  }}||g|R }|                     
|i |           (|S t          |t
          j                  rPt          |t
          j                  r6|j        r|                                }|j        r|                                }|j	        t
          j
        k    s|j	        t
          j
        k    rd S ||g|R } 	|i |S r/   )r1   tuplelistzipappendrC   Tensoris_quantizedr;   dtypefloat)r   kwargsa0a1a_otherr   el0el1new_argsfinners            r   r   zGmaybe_dequantize_first_two_tensor_args_and_handle_tuples.<locals>.inner  sS   Br5!! 	%jU&;&; 	%r4  	%%/D%9%9	% GBKK ; ;S/w//uuh9&99::::NEL)) 	%jU\.J.J 	% %]]__ %]]__ 8u{""bh%+&=&=4%W%%q(%f%%%r   r   )r   r   s   `@r   8maybe_dequantize_first_two_tensor_args_and_handle_tuplesr     s)    & & & & & &2 Lr   xyc                     t          j        |           }t          j        | |z
            }dt          j        ||z            z  S )z
    Computes the SQNR between `x` and `y`.

    Args:
        x: Tensor or tuple of tensors
        y: Tensor or tuple of tensors

    Return:
        float or tuple of floats
       )rC   normlog10)r   r   PsPns       r   compute_sqnrr     s=     
AB	AE		BBG$$$$r   c                     t          j        | |z
  dz                                  | dz                                  z            S )z
    Computes the normalized L2 error between `x` and `y`.

    Args:
        x: Tensor or tuple of tensors
        y: Tensor or tuple of tensors

    Return:
        float or tuple of floats
    r^   )rC   sqrtsumr   r   s     r   compute_normalized_l2_errorr     s9     :A!|((**adZZ\\9:::r   c                     |                      dd          } |                     dd          }t          j        j                            | |          S )z
    Computes the cosine similarity between `x` and `y`.

    Args:
        x: Tensor or tuple of tensors
        y: Tensor or tuple of tensors

    Return:
        float or tuple of floats
    r   )reshaperC   r   
functionalcosine_similarityr   s     r   compute_cosine_similarityr     sE     	
		!RA			!RA800A666r   c                     | j         dk    rM| j        t          j        t          j        t
          j        t
          j        t          j        t          j        fv rdS dS )Nr,   FT)r=   r>   rC   rd   rf   r   catstack)r   s    r   op_type_supports_shadowingr     sM    w/!!;IILLIK
 
 
 54r   idxc                    	 |                      |d          }|l|\  }}t          |          t          |          z   |k    sJ |t          |          k     r||         S t          |                                          |         S t          | j                  t          | j                  z   |k    sJ |t          | j                  k     r| j        |         S |t          | j                  z   }t          | j                                                  |         S # t          $ r t          | j                  t          | j                  z   |k    sJ |t          | j                  k     r| j        |         cY S |t          | j                  z   }t          | j                                                  |         cY S w xY w)zu
    Given a node, gets the n'th input to that node, normalizing
    args and kwargs to the best of its ability.
    T)normalize_to_only_use_kwargs)normalized_argumentsr   r   r   r   r   RuntimeError)r   r   r   norm_args_and_kwargs	norm_argsnorm_kwargs
kwargs_idxs          r   r?   r?     s   
:#88T  9  
  
  +%9"I{y>>C$4$44s::::S^^## ~% K..0011#66ty>>C$4$44s::::S^^##y~% 3ty>>1
DK..0011*== 	: 	: 	: 49~~DK 0 0036666TY9S>!!!s49~~-J**,,--j9999	:s.   AD  &D AD AD AG>AGG)9r   r   typingr   r   r   rC   torch.ao.nn.intrinsic.quantizedaor   	intrinsicr   rl   torch.ao.nn.quantizedrh   torch.nntorch.ao.quantizationr   r   torch.ao.quantization.observerr   torch.ao.quantization.utilsr	   torch.fxr
   torch.fx.graphr   ns_typesr   r   r   rc   Enumr   dictrA   setr   r@   r   r   intr   r   r   r   r   r   r   r   r   r   r   r   boolr   r?   r   r   r   <module>r      sX     , , , , , , , , , ,  . . . . . . . . . . . . . . . # # # # # # # # # # # #       @ @ @ @ @ @ @ @ F F F F F F 8 8 8 8 8 8                   5 5 5 5 5 5 5 5 i
	 	 	 	 	DI 	 	 	{N
{N{N {N #3,<(=#=>	{N
  "778{N {N {N {N|N
NN #3,<(=#=>N eE%,-.elC6G0HHIJ	N N N Nb
 
   :
 	   44 DI    0d      $$$ $ $ $ $N6M 6d 6 6 6 6D  : :%EL %U\ %el % % % :9%  :;5< ;EL ;U\ ; ; ; :9; :7 7%, 75< 7 7 7 :97&T d    !:4 !:[ !:s !:t !: !: !: !: !: !:r   